Primal and dual predicted decrease approximation methods
نویسندگان
چکیده
We introduce the notion of predicted decrease approximation (PDA) for constrained convex optimization, a flexible framework which includes as special cases known algorithms such as generalized conditional gradient, proximal gradient, greedy coordinate descent for separable constraints and working set methods for linear equality constraints with bounds. The new scheme allows the development of a unified convergence analysis for these methods. We further consider a partially strongly convex nonsmooth model and show that dual application of PDA-based methods yields new sublinear convergence rate estimates in terms of both primal and dual objectives. As an example of an application, we provide an explicit working set selection rule for SMO-type methods for training the support vector machine with an improved primal convergence analysis.
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملUsing Combinatorial and LP-based Methods to Design Approximation Algorithms
Our goal in this proposal is to explore the connection between the local ratio technique and linear programming. We believe that a better understanding of this connection will strengthen and extend the local ratio technique and will enable us to apply the technique to a wide variety of problems. Specifically, we intend to improve the best performance guarantee and/or running time of approximati...
متن کاملComputational Complexity of Inexact Gradient Augmented Lagrangian Methods: Application to Constrained MPC
We study the computational complexity certification of inexact gradient augmented Lagrangian methods for solving convex optimization problems with complicated constraints. We solve the augmented Lagrangian dual problem that arises from the relaxation of complicating constraints with gradient and fast gradient methods based on inexact first order information. Moreover, since the exact solution o...
متن کاملSome new results on semi fully fuzzy linear programming problems
There are two interesting methods, in the literature, for solving fuzzy linear programming problems in which the elements of coefficient matrix of the constraints are represented by real numbers and rest of the parameters are represented by symmetric trapezoidal fuzzy numbers. The first method, named as fuzzy primal simplex method, assumes an initial primal basic feasible solution is at hand. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 167 شماره
صفحات -
تاریخ انتشار 2018